Asymptotically Efficient Estimation of a Bivariate Gaussian–Weibull Distribution and an Introduction to the Associated Pseudo-truncated Weibull
Steve P. Verrill,
James W. Evans,
David E. Kretschmann and
Cherilyn A. Hatfield
Communications in Statistics - Theory and Methods, 2015, vol. 44, issue 14, 2957-2975
Abstract:
Two important wood properties are stiffness (modulus of elasticity or MOE) and bending strength (modulus of rupture or MOR). In the past, MOE has often been modeled as a Gaussian and MOR as a lognormal or a two or three parameter Weibull. It is well known that MOE and MOR are positively correlated. To model the simultaneous behavior of MOE and MOR for the purposes of wood system reliability calculations, we introduce a bivariate Gaussian–Weibull distribution and the associated pseudo-truncated Weibull. We use asymptotically efficient likelihood methods to obtain an estimator of the parameter vector of the bivariate Gaussian–Weibull, and then obtain the asymptotic distribution of this estimator.
Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2013.805626 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:44:y:2015:i:14:p:2957-2975
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2013.805626
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().