EconPapers    
Economics at your fingertips  
 

Independence in Contingency Tables Using Simplicial Geometry

Juan José Egozcue, Vera Pawlowsky-Glahn, Matthias Templ and Karel Hron

Communications in Statistics - Theory and Methods, 2015, vol. 44, issue 18, 3978-3996

Abstract: Frequently, contingency tables are generated in a multinomial sampling. Multinomial probabilities are then organized in a table assigning probabilities to each cell. A probability table can be viewed as an element in the simplex. The Aitchison geometry of the simplex identifies independent probability tables as a linear subspace. An important consequence is that, given a probability table, the nearest independent table is obtained by orthogonal projection onto the independent subspace. The nearest independent table is identified as that obtained by the product of geometric marginals, which do not coincide with the standard marginals, except in the independent case. The original probability table is decomposed into orthogonal tables, the independent and the interaction tables. The underlying model is log-linear, and a procedure to test independence of a contingency table, based on a multinomial simulation, is developed. Its performance is studied on an illustrative example.

Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2013.824980 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:44:y:2015:i:18:p:3978-3996

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20

DOI: 10.1080/03610926.2013.824980

Access Statistics for this article

Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe

More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:lstaxx:v:44:y:2015:i:18:p:3978-3996