The Exponentiated G Poisson Model
Antonio E. Gomes,
Cibele Q. Da-Silva and
Gauss M. Cordeiro
Communications in Statistics - Theory and Methods, 2015, vol. 44, issue 20, 4217-4240
Abstract:
We study a new family of distributions defined by the minimum of the Poisson random number of independent identically distributed random variables having a general exponentiated G distribution. Some mathematical properties of the new family including ordinary and incomplete moments, quantile and generating functions, mean deviations, order statistics and their moments, reliability, and Shannon entropy are derived. Maximum likelihood estimation of the model parameters is investigated. Two special models of the new family are discussed. We perform an application to a real data set to show the potentiality of the proposed family.
Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2013.793351 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:44:y:2015:i:20:p:4217-4240
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2013.793351
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().