Statistical Monitoring of Autocorrelated Simple Linear Profiles Based on Principal Components Analysis
Seyed Taghi Akhavan Niaki,
Majid Khedmati and
Mir Emad Soleymanian
Communications in Statistics - Theory and Methods, 2015, vol. 44, issue 21, 4454-4475
Abstract:
In this article, a transformation method using the principal component analysis approach is first applied to remove the existing autocorrelation within each profile in Phase I monitoring of autocorrelated simple linear profiles. This easy-to-use approach is independent of the autocorrelation coefficient. Moreover, since it is a model-free method, it can be used for Phase I monitoring procedures. Then, five control schemes are proposed to monitor the parameters of the profile with uncorrelated error terms. The performances of the proposed control charts are evaluated and are compared through simulation experiments based on different values of autocorrelation coefficient as well as different shift scenarios in the parameters of the profile in terms of probability of receiving an out-of-control signal.
Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2013.835417 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:44:y:2015:i:21:p:4454-4475
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2013.835417
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().