On Wavelet Estimation of the Derivatives of a Density Based on Biased Data
Yogendra P. Chaubey and
Esmaeil Shirazi
Communications in Statistics - Theory and Methods, 2015, vol. 44, issue 21, 4491-4506
Abstract:
Here, we consider wavelet based estimation of the derivatives of a probability density function under random sampling from a weighted distribution and extend the results regarding the asymptotic convergence rates under the i.i.d. setup studied in Prakasa Rao (1996) to the biased-data setup. We compare the performance of the wavelet based estimator with that of the kernel based estimator obtained by differentiating the Efromovich (2004) kernel density estimator through a simulation study.
Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2013.851226 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:44:y:2015:i:21:p:4491-4506
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2013.851226
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().