The Wild Bootstrap for Multilevel Models
Lucia Modugno and
Simone Giannerini
Communications in Statistics - Theory and Methods, 2015, vol. 44, issue 22, 4812-4825
Abstract:
In this paper, we study the performance of the most popular bootstrap schemes for multilevel data. Also, we propose a modified version of the wild bootstrap procedure for hierarchical data structures. The wild bootstrap does not require homoscedasticity or assumptions on the distribution of the error processes. Hence, it is a valuable tool for robust inference in a multilevel framework. We assess the finite size performances of the schemes through a Monte Carlo study. The results show that for big sample sizes it always pays off to adopt an agnostic approach as the wild bootstrap outperforms other techniques.
Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2013.802807 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:44:y:2015:i:22:p:4812-4825
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2013.802807
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().