Adaptive Order Determination for Constructing Time Series Forecasting Models
Yongli Zhang and
Sergio Koreisha
Communications in Statistics - Theory and Methods, 2015, vol. 44, issue 22, 4826-4847
Abstract:
In time series modeling consistent criteria like Bayesian Information Criterion (BIC) outperform in terms of predictability loss-efficient criteria like Akaike Information Criterion (AIC) when data are generated by a finite-order autoregressive process, and the reverse is true when data are generated by an infinite-order autoregressive process. Since in practice we don’t know the data-generating process, it is useful to have an adaptive criterion that behaves as either a consistent or just as a loss-efficient criterion, whichever performs better. Here we derive such a criterion. Moreover, our criterion is adaptive to effective sample sizes and not sensitive to maximum a priori determined order limits.
Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2013.800881 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:44:y:2015:i:22:p:4826-4847
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2013.800881
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().