Semiparametric Proportional Mean Residual Life Model With Censoring Indicators Missing at Random
Xiaolin Chen and
Qihua Wang
Communications in Statistics - Theory and Methods, 2015, vol. 44, issue 24, 5161-5188
Abstract:
For right-censored survival data, the information that whether the observed time is survival or censoring time is frequently lost. This is the case for the competing risk data. In this article, we consider statistical inference for the right-censored survival data with censoring indicators missing at random under the proportional mean residual life model. Simple and augmented inverse probability weighted estimating equation approaches are developed, in which the nonmissingness probability and some unknown conditional expectations are estimated by the kernel smoothing technique. The asymptotic properties of all the proposed estimators are established, while extensive simulation studies demonstrate that our proposed methods perform well under the moderate sample size. At last, the proposed method is applied to a data set from a stage II breast cancer trial.
Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2013.879894 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:44:y:2015:i:24:p:5161-5188
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2013.879894
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().