Combination-Based Permutation Tests: Equipower Property and Power Behavior in Presence of Correlation
Luigi Salmaso
Communications in Statistics - Theory and Methods, 2015, vol. 44, issue 24, 5225-5239
Abstract:
Multivariate combination-based permutation tests have been widely used in many complex problems. In this paper we focus on the equipower property, derived directly from the finite-sample consistency property, and we analyze the impact of the dependency structure on the combined tests. At first, we consider the finite-sample consistency property which assumes that sample sizes are fixed (and possibly small) and considers on each subject a large number of informative variables. Moreover, since permutation test statistics do not require to be standardized, we need not assume that data are homoscedastic in the alternative. The equipower property is then derived from these two notions: consider the unconditional permutation power of a test statistic T for fixed sample sizes, with V ⩾ 2 independent and identically distributed variables and fixed effect δ, calculated in two ways: (i) by considering two V-dimensional samples sized m1 and m2, respectively; (ii) by considering two unidimensional samples sized n1 = Vm1 and n2 = Vm2, respectively. Since the unconditional power essentially depends on the non centrality induced by T, and two ways are provided with exactly the same likelihood and the same non centrality, we show that they are provided with the same power function, at least approximately. As regards both investigating the equipower property and the power behavior in presence of correlation we performed an extensive simulation study.
Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2013.810270 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:44:y:2015:i:24:p:5225-5239
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2013.810270
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().