EconPapers    
Economics at your fingertips  
 

Some Skew-Symmetric Distributions Which Include the Bimodal Ones

Dexter O. Cahoy

Communications in Statistics - Theory and Methods, 2015, vol. 44, issue 3, 554-563

Abstract: The class of skew-symmetric distributions has received much attention in recent years. In this article, we introduce two distributions which can capture the skew-symmetric unimodal (e.g., skew-Laplace, skew-normal) and the skew-symmetric bimodal ones systematically. Their natural generalizations of the skew-Laplace and the skew-normal distributions provide greater flexibility in modeling real data distributions. These models also avoid the identifiability problems of using mixtures to fit bimodal data. The stochastic representations that provide the random number generation algorithms are presented. The explicit forms of the central moments indicated that the proposed distributions have wide ranges of the skewness and kurtosis measures.

Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2012.746986 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:44:y:2015:i:3:p:554-563

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20

DOI: 10.1080/03610926.2012.746986

Access Statistics for this article

Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe

More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:lstaxx:v:44:y:2015:i:3:p:554-563