EconPapers    
Economics at your fingertips  
 

Minimizing Upper Bound of Ruin Probability Under Discrete Risk Model with Markov Chain Interest Rate

Xu Lin, Zhu Dongjin and Zhou Yanru

Communications in Statistics - Theory and Methods, 2015, vol. 44, issue 4, 810-822

Abstract: This article focuses on minimal upper bound of ruin probability for a discrete time risk model with Markov chain interest rate and stochastic investment return. The interest rate of bond market is assumed to be a stationary Markov chain, and the return process of a stock market can be negative. This article presents two kinds of methods for minimizing the upper bound of ruin probability. One method relies on recursive equations for finite time ruin probabilities and inductive approach, the other one depends on martingale approach. Numerical examples show that the martingale approach is better than the inductive one.

Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2013.771748 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:44:y:2015:i:4:p:810-822

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20

DOI: 10.1080/03610926.2013.771748

Access Statistics for this article

Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe

More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:lstaxx:v:44:y:2015:i:4:p:810-822