Robustness of the Affine Equivariant Scatter Estimator Based on the Spatial Rank Covariance Matrix
Kai Yu,
Xin Dang and
Yixin Chen
Communications in Statistics - Theory and Methods, 2015, vol. 44, issue 5, 914-932
Abstract:
Visuri et al. (2000) proposed a technique for robust covariance matrix estimation based on different notions of multivariate sign and rank. Among them, the spatial rank based covariance matrix estimator that utilizes a robust scale estimator is especially appealing due to its high robustness, computational ease, and good efficiency. Also, it is orthogonally equivariant under any distribution and affinely equivariant under elliptically symmetric distributions. In this paper, we study robustness properties of the estimator with respective to two measures: breakdown point and influence function. More specifically, the upper bound of the finite sample breakdown point can be achieved by a proper choice of univariate robust scale estimator. The influence functions for eigenvalues and eigenvectors of the estimator are derived. They are found to be bounded under some assumptions. Moreover, finite sample efficiency comparisons to popular robust MCD, M, and S estimators are reported.
Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2012.755198 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:44:y:2015:i:5:p:914-932
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2012.755198
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().