EconPapers    
Economics at your fingertips  
 

Robustness of the Affine Equivariant Scatter Estimator Based on the Spatial Rank Covariance Matrix

Kai Yu, Xin Dang and Yixin Chen

Communications in Statistics - Theory and Methods, 2015, vol. 44, issue 5, 914-932

Abstract: Visuri et al. (2000) proposed a technique for robust covariance matrix estimation based on different notions of multivariate sign and rank. Among them, the spatial rank based covariance matrix estimator that utilizes a robust scale estimator is especially appealing due to its high robustness, computational ease, and good efficiency. Also, it is orthogonally equivariant under any distribution and affinely equivariant under elliptically symmetric distributions. In this paper, we study robustness properties of the estimator with respective to two measures: breakdown point and influence function. More specifically, the upper bound of the finite sample breakdown point can be achieved by a proper choice of univariate robust scale estimator. The influence functions for eigenvalues and eigenvectors of the estimator are derived. They are found to be bounded under some assumptions. Moreover, finite sample efficiency comparisons to popular robust MCD, M, and S estimators are reported.

Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2012.755198 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:44:y:2015:i:5:p:914-932

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20

DOI: 10.1080/03610926.2012.755198

Access Statistics for this article

Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe

More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:lstaxx:v:44:y:2015:i:5:p:914-932