Moving Block Bootstrap for Analyzing Longitudinal Data
Hyunsu Ju
Communications in Statistics - Theory and Methods, 2015, vol. 44, issue 6, 1130-1142
Abstract:
In a longitudinal study subjects are followed over time. I focus on a case where the number of replications over time is large relative to the number of subjects in the study. I investigate the use of moving block bootstrap methods for analyzing such data. Asymptotic properties of the bootstrap methods in this setting are derived. The effectiveness of these resampling methods is also demonstrated through a simulation study.
Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2013.766341 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:44:y:2015:i:6:p:1130-1142
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2013.766341
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().