A new non parametric estimator for Pdf based on inverse gamma distribution
A. M. Mousa,
M. Kh. Hassan and
A. Fathi
Communications in Statistics - Theory and Methods, 2016, vol. 45, issue 23, 7002-7010
Abstract:
The non parametric approach is considered to estimate probability density function (Pdf) which is supported on(0, ∞). This approach is the inverse gamma kernel. We show that it has same properties as gamma, reciprocal inverse Gaussian, and inverse Gaussian kernels such that it is free of the boundary bias, non negative, and it achieves the optimal rate of convergence for the mean integrated squared error. Also some properties of the estimator were established such as bias and variance. Comparison of the bandwidth selection methods for inverse gamma kernel estimation of Pdf is done.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2014.972575 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:45:y:2016:i:23:p:7002-7010
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2014.972575
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().