Inference on proportional hazard rate model parameter under Type-I progressively hybrid censoring scheme
Leila Golparvar and
Ahmad Parsian
Communications in Statistics - Theory and Methods, 2016, vol. 45, issue 24, 7258-7274
Abstract:
In this paper, under Type-I progressive hybrid censoring sample, we obtain maximum likelihood estimator of unknown parameter when the parent distribution belongs to proportional hazard rate family. We derive the conditional probability density function of the maximum likelihood estimator using moment-generating function technique. The exact confidence interval is obtained and compared by conducting a Monte Carlo simulation study for burr Type XII distribution. Finally, we obtain the Bayes and posterior regret gamma minimax estimates of the parameter under a precautionary loss function with precautionary index k = 2 and compare their behavior via a Monte Carlo simulation study.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2014.978020 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:45:y:2016:i:24:p:7258-7274
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2014.978020
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().