Non parametric portmanteau tests for detecting non linearities in high dimensions
Jan G. Gooijer and
Ao Yuan
Communications in Statistics - Theory and Methods, 2016, vol. 45, issue 2, 385-399
Abstract:
We propose two non parametric portmanteau test statistics for serial dependence in high dimensions using the correlation integral. One test depends on a cutoff threshold value, while the other test is freed of this dependence. Although these tests may each be viewed as variants of the classical Brock, Dechert, and Scheinkman (BDS) test statistic, they avoid some of the major weaknesses of this test. We establish consistency and asymptotic normality of both portmanteau tests. Using Monte Carlo simulations, we investigate the small sample properties of the tests for a variety of data generating processes with normally and uniformly distributed innovations. We show that asymptotic theory provides accurate inference in finite samples and for relatively high dimensions. This is followed by a power comparison with the BDS test, and with several rank-based extensions of the BDS tests that have recently been proposed in the literature. Two real data examples are provided to illustrate the use of the test procedure.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2013.815209 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:45:y:2016:i:2:p:385-399
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2013.815209
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().