EconPapers    
Economics at your fingertips  
 

Non parametric portmanteau tests for detecting non linearities in high dimensions

Jan G. Gooijer and Ao Yuan

Communications in Statistics - Theory and Methods, 2016, vol. 45, issue 2, 385-399

Abstract: We propose two non parametric portmanteau test statistics for serial dependence in high dimensions using the correlation integral. One test depends on a cutoff threshold value, while the other test is freed of this dependence. Although these tests may each be viewed as variants of the classical Brock, Dechert, and Scheinkman (BDS) test statistic, they avoid some of the major weaknesses of this test. We establish consistency and asymptotic normality of both portmanteau tests. Using Monte Carlo simulations, we investigate the small sample properties of the tests for a variety of data generating processes with normally and uniformly distributed innovations. We show that asymptotic theory provides accurate inference in finite samples and for relatively high dimensions. This is followed by a power comparison with the BDS test, and with several rank-based extensions of the BDS tests that have recently been proposed in the literature. Two real data examples are provided to illustrate the use of the test procedure.

Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2013.815209 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:45:y:2016:i:2:p:385-399

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20

DOI: 10.1080/03610926.2013.815209

Access Statistics for this article

Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe

More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:lstaxx:v:45:y:2016:i:2:p:385-399