Time-varying clustering of multivariate longitudinal observations
Antonello Maruotti and
Maurizio Vichi
Communications in Statistics - Theory and Methods, 2016, vol. 45, issue 2, 430-443
Abstract:
We propose a statistical method for clustering multivariate longitudinal data into homogeneous groups. This method relies on a time-varying extension of the classical K-means algorithm, where a multivariate vector autoregressive model is additionally assumed for modeling the evolution of clusters' centroids over time. Model inference is based on a least-squares method and on a coordinate descent algorithm. To illustrate our work, we consider a longitudinal dataset on human development. Three variables are modeled, namely life expectancy, education and gross domestic product.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2013.821488 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:45:y:2016:i:2:p:430-443
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2013.821488
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().