EconPapers    
Economics at your fingertips  
 

Time-varying clustering of multivariate longitudinal observations

Antonello Maruotti and Maurizio Vichi

Communications in Statistics - Theory and Methods, 2016, vol. 45, issue 2, 430-443

Abstract: We propose a statistical method for clustering multivariate longitudinal data into homogeneous groups. This method relies on a time-varying extension of the classical K-means algorithm, where a multivariate vector autoregressive model is additionally assumed for modeling the evolution of clusters' centroids over time. Model inference is based on a least-squares method and on a coordinate descent algorithm. To illustrate our work, we consider a longitudinal dataset on human development. Three variables are modeled, namely life expectancy, education and gross domestic product.

Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2013.821488 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:45:y:2016:i:2:p:430-443

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20

DOI: 10.1080/03610926.2013.821488

Access Statistics for this article

Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe

More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:lstaxx:v:45:y:2016:i:2:p:430-443