Improved confidence intervals for the exponential mean via tail functions
Borek Puza and
Mo Yang
Communications in Statistics - Theory and Methods, 2016, vol. 45, issue 2, 529-539
Abstract:
The method of tail functions is applied to confidence estimation of the exponential mean in the presence of prior information. It is shown how the “ordinary” confidence interval can be generalized using a class of tail functions and then engineered for optimality, in the sense of minimizing prior expected length over that class, whilst preserving frequentist coverage. It is also shown how to derive the globally optimal interval, and how to improve on this using tail functions when criteria other than length are taken into consideration. Probabilities of false coverage are reported for some of the intervals under study, and the theory is illustrated by application to confidence estimation of a reliability coefficient based on some survival data.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2013.833235 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:45:y:2016:i:2:p:529-539
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2013.833235
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().