EconPapers    
Economics at your fingertips  
 

Variable selection in finite mixture of semi-parametric regression models

Ehsan Ormoz and Farzad Eskandari

Communications in Statistics - Theory and Methods, 2016, vol. 45, issue 3, 695-711

Abstract: In this paper we are concerned with variable selection in finite mixture of semiparametric regression models. This task consists of model selection for non parametric component and variable selection for parametric part. Thus, we encountered separate model selections for every non parametric component of each sub model. To overcome this computational burden, we introduced a class of variable selection procedures for finite mixture of semiparametric regression models using penalized approach for variable selection. It is shown that the new method is consistent for variable selection. Simulations show that the performance of proposed method is good, and it consequently improves pervious works in this area and also requires much less computing power than existing methods.

Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2013.835413 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:45:y:2016:i:3:p:695-711

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20

DOI: 10.1080/03610926.2013.835413

Access Statistics for this article

Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe

More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:lstaxx:v:45:y:2016:i:3:p:695-711