Variable selection in finite mixture of semi-parametric regression models
Ehsan Ormoz and
Farzad Eskandari
Communications in Statistics - Theory and Methods, 2016, vol. 45, issue 3, 695-711
Abstract:
In this paper we are concerned with variable selection in finite mixture of semiparametric regression models. This task consists of model selection for non parametric component and variable selection for parametric part. Thus, we encountered separate model selections for every non parametric component of each sub model. To overcome this computational burden, we introduced a class of variable selection procedures for finite mixture of semiparametric regression models using penalized approach for variable selection. It is shown that the new method is consistent for variable selection. Simulations show that the performance of proposed method is good, and it consequently improves pervious works in this area and also requires much less computing power than existing methods.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2013.835413 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:45:y:2016:i:3:p:695-711
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2013.835413
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().