Moments and quadratic forms of matrix variate skew normal distributions
Shimin Zheng,
Jeff Knisley and
Kesheng Wang
Communications in Statistics - Theory and Methods, 2016, vol. 45, issue 3, 794-803
Abstract:
In 2007, Domínguez-Molina et al. obtained the moment generating function (mgf) of the matrix variate closed skew normal distribution. In this paper, we use their mgf to obtain the first two moments and some additional properties of quadratic forms for the matrix variate skew normal distributions. The quadratic forms are particularly interesting because they are essentially correlation tests that introduce a new type of orthogonality condition.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2013.851230 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:45:y:2016:i:3:p:794-803
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2013.851230
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().