EconPapers    
Economics at your fingertips  
 

The Lamé class of Lorenz curves

José María Sarabia, Vanesa Jordá and Carmen Trueba

Communications in Statistics - Theory and Methods, 2017, vol. 46, issue 11, 5311-5326

Abstract: In this paper, the class of Lamé Lorenz curves is studied. This family has the advantage of modeling inequality with a single parameter. The family has a double motivation: it can be obtained from an economic model and from simple transformations of classical Lorenz curves. The underlying cumulative distribution functions have a simple closed form, and correspond to the Singh–Maddala and Dagum distributions, which are well known in the economic literature. The Lorenz order is studied and several inequality and polarization measures are obtained, including Gini, Donaldson–Weymark–Kakwani, Pietra, and Wolfson indices. Some extensions of the Lamé family are obtained. Fitting and estimation methods under two different data configurations are proposed. Empirical applications with real data are given. Finally, some relationships with other curves are included.

Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2013.775306 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:46:y:2017:i:11:p:5311-5326

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20

DOI: 10.1080/03610926.2013.775306

Access Statistics for this article

Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe

More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:lstaxx:v:46:y:2017:i:11:p:5311-5326