Partially adaptive quantile estimators
David J. Mauler,
James McDonald and
Logan C. Tatham
Communications in Statistics - Theory and Methods, 2017, vol. 46, issue 11, 5327-5341
Abstract:
This paper contrasts two approaches to estimating quantile regression models: traditional semi-parametric methods and partially adaptive estimators using flexible probability density functions (pdfs). While more general pdfs could have been used, the skewed Laplace was selected for pedagogical purposes. Monte Carlo simulations are used to compare the behavior of the semi-parametric and partially adaptive quantile estimators in the presence of possibly skewed and heteroskedastic data. Both approaches accommodate skewness and heteroskedasticity which are consistent with linear quantiles; however, the partially adaptive estimator considered allows for non linear quantiles and also provides simple tests for symmetry and heteroskedasticity. The methods are applied to the problem of estimating conditional quantile functions for wages corresponding to different levels of education.
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2015.1096391 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:46:y:2017:i:11:p:5327-5341
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2015.1096391
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().