EconPapers    
Economics at your fingertips  
 

The use of temporally aggregated data on detecting a mean change of a time series process

Bu Hyoung Lee and William W. S. Wei

Communications in Statistics - Theory and Methods, 2017, vol. 46, issue 12, 5851-5871

Abstract: In this article we investigate the effects of temporal aggregation on testing for a mean change of time series through a likelihood ratio (LR) test. We derive the functional relationship between non aggregate-model parameters and aggregate-model parameters. Using the relationship, we propose a modified LR test when aggregate data are used. Through the theory, Monte Carlo simulations, and empirical examples, we show that aggregation leads the null distribution of the LR test statistic being shifted to the left. Hence, the test power increases as the order of aggregation increases.

Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2015.1091082 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:46:y:2017:i:12:p:5851-5871

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20

DOI: 10.1080/03610926.2015.1091082

Access Statistics for this article

Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe

More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:lstaxx:v:46:y:2017:i:12:p:5851-5871