The use of temporally aggregated data on detecting a mean change of a time series process
Bu Hyoung Lee and
William W. S. Wei
Communications in Statistics - Theory and Methods, 2017, vol. 46, issue 12, 5851-5871
Abstract:
In this article we investigate the effects of temporal aggregation on testing for a mean change of time series through a likelihood ratio (LR) test. We derive the functional relationship between non aggregate-model parameters and aggregate-model parameters. Using the relationship, we propose a modified LR test when aggregate data are used. Through the theory, Monte Carlo simulations, and empirical examples, we show that aggregation leads the null distribution of the LR test statistic being shifted to the left. Hence, the test power increases as the order of aggregation increases.
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2015.1091082 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:46:y:2017:i:12:p:5851-5871
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2015.1091082
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().