Objective Bayesian hypothesis testing in regression models with first-order autoregressive residuals
Yongku Kim,
Woo Dong Lee,
Sang Gil Kang and
Dal Ho Kim
Communications in Statistics - Theory and Methods, 2017, vol. 46, issue 12, 5872-5887
Abstract:
This article considers the objective Bayesian testing in the normal regression models with first-order autoregressive residuals. We propose some solutions based on a Bayesian model selection procedure to this problem where no subjective input is considered. We construct the proper priors for testing the autocorrelation coefficient based on measures of divergence between competing models, which is called the divergence-based (DB) priors and then propose the objective Bayesian decision-theoretic rule, which is called the Bayesian reference criterion (BRC). Finally, we derive the intrinsic test statistic for testing the autocorrelation coefficient. The behavior of the Bayes factor-based DB priors is examined by comparing with the BRC in a simulation study and an example.
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2015.1112915 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:46:y:2017:i:12:p:5872-5887
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2015.1112915
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().