EconPapers    
Economics at your fingertips  
 

Objective Bayesian hypothesis testing in regression models with first-order autoregressive residuals

Yongku Kim, Woo Dong Lee, Sang Gil Kang and Dal Ho Kim

Communications in Statistics - Theory and Methods, 2017, vol. 46, issue 12, 5872-5887

Abstract: This article considers the objective Bayesian testing in the normal regression models with first-order autoregressive residuals. We propose some solutions based on a Bayesian model selection procedure to this problem where no subjective input is considered. We construct the proper priors for testing the autocorrelation coefficient based on measures of divergence between competing models, which is called the divergence-based (DB) priors and then propose the objective Bayesian decision-theoretic rule, which is called the Bayesian reference criterion (BRC). Finally, we derive the intrinsic test statistic for testing the autocorrelation coefficient. The behavior of the Bayes factor-based DB priors is examined by comparing with the BRC in a simulation study and an example.

Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2015.1112915 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:46:y:2017:i:12:p:5872-5887

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20

DOI: 10.1080/03610926.2015.1112915

Access Statistics for this article

Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe

More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:lstaxx:v:46:y:2017:i:12:p:5872-5887