EconPapers    
Economics at your fingertips  
 

Reliability analysis of masked data in adaptive step-stress partially accelerated lifetime tests with progressive removal

Bin Liu, Yimin Shi, Jing Cai and Ruibing Wang

Communications in Statistics - Theory and Methods, 2017, vol. 46, issue 12, 6174-6191

Abstract: By combining the progressive hybrid censoring with the step-stress partially accelerated lifetime test, we propose an adaptive step-stress partially accelerated lifetime test, which allows random changing of the number of step-stress levels according to the pre-fixed censoring number and time points. Thus, the time expenditure and economic cost of the test will be reduced greatly. Based on the Lindley-distributed tampered failure rate (TFR) model with masked system lifetime data, the BFGS method is introduced in the expectation maximization (EM) algorithm to obtain the maximum likelihood estimation (MLE), which overcomes the difficulties of the vague maximization procedure in the M-step. Asymptotic confidence intervals of components' distribution parameters are also investigated according to the missing information principle. As comparison, the Bayesian estimation and the highest probability density (HPD) credible intervals are obtained by using adaptive rejection sampling. Furthermore, the reliability of the system and components are estimated at a specified time under usual and severe operating conditions. Finally, a numerical simulation example is presented to illustrate the performance of our proposed method.

Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2015.1122058 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:46:y:2017:i:12:p:6174-6191

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20

DOI: 10.1080/03610926.2015.1122058

Access Statistics for this article

Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe

More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:lstaxx:v:46:y:2017:i:12:p:6174-6191