Bayesian inference and prediction of the Pareto distribution based on ordered ranked set sampling
Mostafa M. Mohie El-Din,
Mohamed S. Kotb,
Ehab F. Abd-Elfattah and
Haidy A. Newer
Communications in Statistics - Theory and Methods, 2017, vol. 46, issue 13, 6264-6279
Abstract:
In this paper, order statistics from independent and non identically distributed random variables is used to obtain ordered ranked set sampling (ORSS). Bayesian inference of unknown parameters under a squared error loss function of the Pareto distribution is determined. We compute the minimum posterior expected loss (the posterior risk) of the derived estimates and compare them with those based on the corresponding simple random sample (SRS) to assess the efficiency of the obtained estimates. Two-sample Bayesian prediction for future observations is introduced by using SRS and ORSS for one- and m-cycle. A simulation study and real data are applied to show the proposed results.
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2015.1124118 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:46:y:2017:i:13:p:6264-6279
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2015.1124118
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().