Analysis of incomplete data in the presence of dependent competing risks from Marshall–Olkin bivariate Weibull distribution under progressive hybrid censoring
Jing Cai,
Yimin Shi and
Bin Liu
Communications in Statistics - Theory and Methods, 2017, vol. 46, issue 13, 6497-6511
Abstract:
This article considers the statistical analysis of dependent competing risks model with incomplete data under Type-I progressive hybrid censored condition using a Marshall–Olkin bivariate Weibull distribution. Based on the expectation maximum algorithm, maximum likelihood estimators for the unknown parameters are obtained, and the missing information principle is used to obtain the observed information matrix. As the maximum likelihood approach may fail when the available information is insufficient, Bayesian approach incorporated with auxiliary variables is developed for estimating the parameters of the model, and Monte Carlo method is employed to construct the highest posterior density credible intervals. The proposed method is illustrated through a numerical example under different progressive censoring schemes and masking probabilities. Finally, a real data set is analyzed for illustrative purposes.
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2015.1129420 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:46:y:2017:i:13:p:6497-6511
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2015.1129420
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().