Retrospective change detection in categorical time series
Edit Gombay,
Fuxiao Li and
Hao Yu
Communications in Statistics - Theory and Methods, 2017, vol. 46, issue 14, 6831-6845
Abstract:
The aim of this paper is to propose methods of detecting change in the coefficients of a multinomial logistic regression model for categorical time series offline. The alternatives to the null hypothesis of stationarity can be either the hypothesis that it is not true, or that there is a temporary change in the sequence. We use the efficient score vector of the partial likelihood function. This has several advantages. First, the alternative value of the parameter does not have to be estimated; hence, we have a procedure that has a simple structure with only one parameter estimation using all available observations. This is in contrast with the generalized likelihood ratio-based change point tests. The efficient score vector is used in various ways. As a vector, its components correspond to the different components of the multinomial logistic regression model’s parameter vector. Using its quadratic form a test can be defined, where the presence of a change in any or all parameters is tested for. If there are too many parameters one can test for any subset while treating the rest as nuisance parameters. Our motivating example is a DNA sequence of four categories, and our test result shows that in the published data the distribution of the four categories is not stationary.
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2015.1137595 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:46:y:2017:i:14:p:6831-6845
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2015.1137595
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().