Mixed multivariate EWMA-CUSUM control charts for an improved process monitoring
Jimoh Olawale Ajadi and
Muhammad Riaz
Communications in Statistics - Theory and Methods, 2017, vol. 46, issue 14, 6980-6993
Abstract:
Multivariate exponential weighted moving average and cumulative sum charts are the most common memory type multivariate control charts. They make use of the present and past information to detect small shifts in the process parameter(s). In this article, we propose two new multivariate control charts using a mixed version of their design setups. The plotting statistics of the proposed charts are based on the cumulative sum of the multivariate exponentially weighted moving averages. The performances of these schemes are evaluated in terms of average run length. The proposals are compared with their existing counterparts, including HotellingT2, MCUSUM, MEWMA, and MC1 charts. An application example is also presented for practical considerations using a real dataset.
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2016.1139132 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:46:y:2017:i:14:p:6980-6993
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2016.1139132
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().