EconPapers    
Economics at your fingertips  
 

Bayesian inference on extreme value distribution using upper record values

Jung In Seo and Yongku Kim

Communications in Statistics - Theory and Methods, 2017, vol. 46, issue 15, 7751-7768

Abstract: In this paper we address estimation and prediction problems for extreme value distributions under the assumption that the only available data are the record values. We provide some properties and pivotal quantities, and derive unbiased estimators for the location and rate parameters based on these properties and pivotal quantities. In addition, we discuss mean-squared errors of the proposed estimators and exact confidence intervals for the rate parameter. In Bayesian inference, we develop objective Bayesian analysis by deriving non informative priors such as the Jeffrey, reference, and probability matching priors for the location and rate parameters. We examine the validity of the proposed methods through Monte Carlo simulations for various record values of size and present a real data set for illustration purposes.

Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2016.1165848 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:46:y:2017:i:15:p:7751-7768

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20

DOI: 10.1080/03610926.2016.1165848

Access Statistics for this article

Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe

More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:lstaxx:v:46:y:2017:i:15:p:7751-7768