EconPapers    
Economics at your fingertips  
 

Complete convergence and complete moment convergence for widely orthant-dependent random variables

Yang Ding, Yi Wu, Songlin Ma, Xinran Tao and Xuejun Wang

Communications in Statistics - Theory and Methods, 2017, vol. 46, issue 16, 8278-8294

Abstract: In this paper, we first establish the complete convergence for weighted sums of widely orthant-dependent (WOD, in short) random variables by using the Rosenthal type maximal inequality. Based on the complete convergence, we further study the complete moment convergence for weighted sums of arrays of rowwise WOD random variables which is stochastically dominated by a random variable X. The results obtained in the paper generalize the corresponding ones for some dependent random variables.

Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2016.1177085 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:46:y:2017:i:16:p:8278-8294

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20

DOI: 10.1080/03610926.2016.1177085

Access Statistics for this article

Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe

More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:lstaxx:v:46:y:2017:i:16:p:8278-8294