The kernel regression estimation for randomly censored functional stationary ergodic data
Nengxiang Ling and
Yang Liu
Communications in Statistics - Theory and Methods, 2017, vol. 46, issue 17, 8557-8574
Abstract:
In this paper, we investigate the asymptotic properties of the kernel estimator for non parametric regression operator when the functional stationary ergodic data with randomly censorship are considered. More precisely, we introduce the kernel-type estimator of the non parametric regression operator with the responses randomly censored and obtain the almost surely convergence with rate as well as the asymptotic normality of the estimator. As an application, the asymptotic (1 − ζ) confidence interval of the regression operator is also presented (0
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2016.1185117 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:46:y:2017:i:17:p:8557-8574
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2016.1185117
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().