EconPapers    
Economics at your fingertips  
 

Asymptotic random extremal ratio and product based on generalized order statistics and its dual

M. A. Alawady, A. Elsawah (), Jianwei Hu and Hong Qin

Communications in Statistics - Theory and Methods, 2017, vol. 46, issue 18, 8881-8896

Abstract: The extremal ratio has been used in several fields, most notably in industrial quality control, life testing, small-area variation analysis, and the classical heterogeneity of variance situation. In many biological, agricultural, military activity problems and in some quality control problems, it is almost impossible to have a fixed sample size, because some observations are always lost for various reasons. Therefore, the sample size itself is considered frequently to be an random variable (rv). Generalized order statistics (GOS) have been introduced as a unifying theme for several models of ascendingly ordered rvs. The concept of dual generalized order statistics (DGOS) is introduced to enable a common approach to descendingly ordered rvs. In this article, the limit dfs are obtained for the extremal ratio and product with random indices under non random normalization based on GOS and DGOS. Moreover, this article considers the conditions under which the cases of random and non random indices give the same asymptotic results. Some illustrative examples are obtained, which lend further support to our theoretical results.

Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2016.1197255 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:46:y:2017:i:18:p:8881-8896

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20

DOI: 10.1080/03610926.2016.1197255

Access Statistics for this article

Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe

More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:lstaxx:v:46:y:2017:i:18:p:8881-8896