EconPapers    
Economics at your fingertips  
 

On tests detecting difference in means and variances simultaneously under normality

Hyo-Il Park

Communications in Statistics - Theory and Methods, 2017, vol. 46, issue 20, 10025-10035

Abstract: In this paper, we propose several tests for detecting difference in means and variances simultaneously between two populations under normality. First of all, we propose a likelihood ratio test. Then we obtain an expression of the likelihood ratio statistic by a product of two functions of random quantities, which can be used to test the two individual partial hypotheses for differences in means and variances. With those individual partial tests, we propose a union-intersection test. Also we consider two optimal tests by combining the p-values of the two individual partial tests. For obtaining null distributions, we apply the permutation principle with the Monte Carlo approach. Then we compare efficiency among the proposed tests with well-known ones through a simulation study. Finally, we discuss some interesting features related to the simultaneous tests and resampling methods as concluding remarks.

Date: 2017
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2016.1228964 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:46:y:2017:i:20:p:10025-10035

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20

DOI: 10.1080/03610926.2016.1228964

Access Statistics for this article

Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe

More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:lstaxx:v:46:y:2017:i:20:p:10025-10035