An additive subdistribution hazard model for competing risks data
Wanxing Li,
Xiaoming Xue and
Yonghong Long
Communications in Statistics - Theory and Methods, 2017, vol. 46, issue 23, 11667-11687
Abstract:
The cumulative incidence function plays an important role in assessing its treatment and covariate effects with competing risks data. In this article, we consider an additive hazard model allowing the time-varying covariate effects for the subdistribution and propose the weighted estimating equation under the covariate-dependent censoring by fitting the Cox-type hazard model for the censoring distribution. When there exists some association between the censoring time and the covariates, the proposed coefficients’ estimations are unbiased and the large-sample properties are established. The finite-sample properties of the proposed estimators are examined in the simulation study. The proposed Cox-weighted method is applied to a competing risks dataset from a Hodgkin's disease study.
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2016.1277759 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:46:y:2017:i:23:p:11667-11687
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2016.1277759
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().