On the ridge regression estimator with sub-space restriction
R. Fallah,
M. Arashi and
S. M. M. Tabatabaey
Communications in Statistics - Theory and Methods, 2017, vol. 46, issue 23, 11854-11865
Abstract:
In the linear regression model with elliptical errors, a shrinkage ridge estimator is proposed. In this regard, the restricted ridge regression estimator under sub-space restriction is improved by incorporating a general function which satisfies Taylor’s series expansion. Approximate quadratic risk function of the proposed shrinkage ridge estimator is evaluated in the elliptical regression model. A Monte Carlo simulation study and analysis based on a real data example are considered for performance analysis. It is evident from the numerical results that the shrinkage ridge estimator performs better than both unrestricted and restricted estimators in the multivariate t-regression model, for some specific cases.
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2017.1285928 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:46:y:2017:i:23:p:11854-11865
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2017.1285928
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().