Cross-entropy method for estimation of posterior expectation in Bayesian VAR models
Nuša Mikuljan Šljivić
Communications in Statistics - Theory and Methods, 2017, vol. 46, issue 23, 11933-11947
Abstract:
In this article, an importance sampling (IS) method for the posterior expectation of a non linear function in a Bayesian vector autoregressive (VAR) model is developed. Most Bayesian inference problems involve the evaluation of the expectation of a function of interest, usually a non linear function of the model parameters, under the posterior distribution. Non linear functions in Bayesian VAR setting are difficult to estimate and usually require numerical methods for their evaluation. A weighted IS estimator is used for the evaluation of the posterior expectation. With the cross-entropy (CE) approach, the IS density is chosen from a specified family of densities such that the CE distance or the Kullback–Leibler divergence between the optimal IS density and the importance density is minimal. The performance of the proposed algorithm is assessed in an iterated multistep forecasting of US macroeconomic time series.
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2017.1288252 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:46:y:2017:i:23:p:11933-11947
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2017.1288252
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().