Estimation of population mean based on dual use of auxiliary information in non response
Mazhar Yaqub,
Javid Shabbir and
Sat Narian Gupta
Communications in Statistics - Theory and Methods, 2017, vol. 46, issue 24, 12130-12151
Abstract:
Whenever there is auxiliary information available in any form, the researchers want to utilize it in the method of estimation to obtain the most efficient estimator. When there exists enough amount of correlation between the study and the auxiliary variables, and parallel to these associations, the ranks of the auxiliary variables are also correlated with the study variable, which can be used a valuable device for enhancing the precision of an estimator accordingly. This article addresses the problem of estimating the finite population mean that utilizes the complementary information in the presence of (i) the auxiliary variable and (ii) the ranks of the auxiliary variable for non response. We suggest an improved estimator for estimating the finite population mean using the auxiliary information in the presence of non response. Expressions for bias and mean squared error of considered estimators are derived up to the first order of approximation. The performance of estimators is compared theoretically and numerically. A numerical study is carried out to evaluate the performances of estimators. It is observed that the proposed estimator is more efficient than the usual sample mean and the regression estimators, and some other families of ratio and exponential type of estimators.
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2017.1291969 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:46:y:2017:i:24:p:12130-12151
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2017.1291969
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().