Efficiency of the generalized-difference-based weighted mixed almost unbiased two-parameter estimator in partially linear model
Fikri Akdeniz and
Mahdi Roozbeh
Communications in Statistics - Theory and Methods, 2017, vol. 46, issue 24, 12259-12280
Abstract:
In this paper, a generalized difference-based estimator is introduced for the vector parameter β in partially linear model when the errors are correlated. A generalized-difference-based almost unbiased two-parameter estimator is defined for the vector parameter β. Under the linear stochastic constraint r = Rβ + e, we introduce a new generalized-difference-based weighted mixed almost unbiased two-parameter estimator. The performance of this new estimator over the generalized-difference-based estimator and generalized- difference-based almost unbiased two-parameter estimator in terms of the MSEM criterion is investigated. The efficiency properties of the new estimator is illustrated by a simulation study. Finally, the performance of the new estimator is evaluated for a real dataset.
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2017.1295075 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:46:y:2017:i:24:p:12259-12280
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2017.1295075
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().