Aging and ordering properties of multivariate lifetimes with Archimedean dependence structures
Chen Li and
Xiaohu Li
Communications in Statistics - Theory and Methods, 2017, vol. 46, issue 2, 874-891
Abstract:
This paper further studies monotone aging properties of the multivariate random lifetime. We revise the sufficient condition for the negative monotone aging property in terms of the multivariate usual stochastic order in Theorem 3.3 of Rezapour et al. (2013) and derive the condition sufficient to the multivariate monotone aging properties in terms of the upper orthant order. Also we study the upper orthant order of multivariate residual lifetimes and inactivity times from populations sharing a common Archimedean survival copula and Archimedean survival copula, respectively. Two simple applications in multivariate stress-strength and frailty models are presented as well.
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2015.1006783 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:46:y:2017:i:2:p:874-891
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2015.1006783
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().