Statistical inference on the drift parameter in fractional Brownian motion with a deterministic drift
David Stibůrek
Communications in Statistics - Theory and Methods, 2017, vol. 46, issue 2, 892-905
Abstract:
In statistical inference on the drift parameter a in the fractional Brownian motion WHt with the Hurst parameter H ∈ (0, 1) with a constant drift YHt = at + WHt, there is a large number of options how to do it. We may, for example, base this inference on the properties of the standard normal distribution applied to the differences between the observed values of the process at discrete times. Although such methods are very simple, it turns out that more appropriate is to use inverse methods. Such methods can be generalized to non constant drift. For the hypotheses testing about the drift parameter a, it is more proper to standardize the observed process, and to use inverse methods based on the first exit time of the observed process of a pre-specified interval until some given time. These procedures are illustrated, and their times of decision are compared against the direct approach. Other generalizations are possible when the random part is a symmetric stochastic integral of a known, deterministic function with respect to fractional Brownian motion.
Date: 2017
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2015.1006784 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:46:y:2017:i:2:p:892-905
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2015.1006784
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().