EconPapers    
Economics at your fingertips  
 

How far from identifiability? A systematic overview of the statistical matching problem in a non parametric framework

Pier Luigi Conti, Daniela Marella and Mauro Scanu

Communications in Statistics - Theory and Methods, 2017, vol. 46, issue 2, 967-994

Abstract: Statistical matching consists in estimating the joint characteristics of two variables observed in two distinct and independent sample surveys, respectively. In a parametric setup, ranges of estimates for non identifiable parameters are the only estimable items, unless restrictive assumptions on the probabilistic relationship between the non jointly observed variables are imposed. These ranges correspond to the uncertainty due to the absence of joint observations on the pair of variables of interest. The aim of this paper is to analyze the uncertainty in statistical matching in a non parametric setting. A measure of uncertainty is introduced, and its properties studied: this measure studies the “intrinsic” association between the pair of variables, which is constant and equal to 1/6 whatever the form of the marginal distribution functions of the two variables when knowledge on the pair of variables is the only one available in the two samples. This measure becomes useful in the context of the reduction of uncertainty due to further knowledge than data themselves, as in the case of structural zeros. In this case the proposed measure detects how the introduction of further knowledge shrinks the intrinsic uncertainty from 1/6 to smaller values, zero being the case of no uncertainty. Sampling properties of the uncertainty measure and of the bounds of the uncertainty intervals are also proved.

Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2015.1010005 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:46:y:2017:i:2:p:967-994

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20

DOI: 10.1080/03610926.2015.1010005

Access Statistics for this article

Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe

More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:lstaxx:v:46:y:2017:i:2:p:967-994