EconPapers    
Economics at your fingertips  
 

On constructing general minimum lower order confounding two-level block designs

Sheng-Li Zhao and Qing Sun

Communications in Statistics - Theory and Methods, 2017, vol. 46, issue 3, 1261-1274

Abstract: In practice, to reduce systematic variation and increase precision of effect estimation, a practical design strategy is then to partition the experimental units into homogeneous groups, known as blocks. It is an important issue to study the optimal way on blocking the experimental units. Blocked general minimum lower order confounding (B1-GMC) is a new criterion for selecting optimal block designs. The paper considers the construction of optimal two-level block designs with respect to the B1-GMC criterion. By utilizing doubling theory and MaxC2 design, some optimal block designs with respect to the B1-GMC criterion are obtained.

Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2015.1014112 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:46:y:2017:i:3:p:1261-1274

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20

DOI: 10.1080/03610926.2015.1014112

Access Statistics for this article

Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe

More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:lstaxx:v:46:y:2017:i:3:p:1261-1274