On the Bayesian estimation and influence diagnostics for the Weibull-Negative-Binomial regression model with cure rate under latent failure causes
Bao Yiqi,
Vicente G. Cancho and
Francisco Louzada
Communications in Statistics - Theory and Methods, 2017, vol. 46, issue 3, 1462-1489
Abstract:
The purpose of this paper is to develop a Bayesian approach for the Weibull-Negative-Binomial regression model with cure rate under latent failure causes and presence of randomized activation mechanisms. We assume the number of competing causes of the event of interest follows a Negative Binomial (NB) distribution while the latent lifetimes are assumed to follow a Weibull distribution. Markov chain Monte Carlos (MCMC) methods are used to develop the Bayesian procedure. Model selection to compare the fitted models is discussed. Moreover, we develop case deletion influence diagnostics for the joint posterior distribution based on the ψ-divergence, which has several divergence measures as particular cases. The developed procedures are illustrated with a real data set.
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2015.1019150 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:46:y:2017:i:3:p:1462-1489
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2015.1019150
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().