Estimation in autoregressive models with surrogate data and validation data
Shi-Hang Yu,
De-Hui Wang,
Kun Li and
Zhi-Wen Zhao
Communications in Statistics - Theory and Methods, 2017, vol. 46, issue 3, 1532-1545
Abstract:
Time-series data are often subject to measurement error, usually the result of needing to estimate the variable of interest. Generally, however, the relationship between the surrogate variables and the true variables can be rather complicated compared to the classical additive error structure usually assumed. In this article, we address the estimation of the parameters in autoregressive models in the presence of function measurement errors. We first develop a parameter estimation method with the help of validation data; this estimation method does not depend on functional form and the distribution of the measurement error. The proposed estimator is proved to be consistent. Moreover, the asymptotic representation and the asymptotic normality of the estimator are also derived, respectively. Simulation results indicate that the proposed method works well for practical situation.
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2015.1019154 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:46:y:2017:i:3:p:1532-1545
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2015.1019154
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().