EconPapers    
Economics at your fingertips  
 

Slashed generalized exponential distribution

Juan M. Astorga, Héctor W. Gómez and Heleno Bolfarine

Communications in Statistics - Theory and Methods, 2017, vol. 46, issue 5, 2091-2102

Abstract: In this paper, we introduce an extension of the generalized exponential (GE) distribution, making it more robust against possible influential observations. The new model is defined as the quotient between a GE random variable and a beta-distributed random variable with one unknown parameter. The resulting distribution is a distribution with greater kurtosis than the GE distribution. Probability properties of the distribution such as moments and asymmetry and kurtosis are studied. Likewise, statistical properties are investigated using the method of moments and the maximum likelihood approach. Two real data analyses are reported illustrating better performance of the new model over the GE model.

Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2015.1032426 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:46:y:2017:i:5:p:2091-2102

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20

DOI: 10.1080/03610926.2015.1032426

Access Statistics for this article

Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe

More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:lstaxx:v:46:y:2017:i:5:p:2091-2102