Slashed generalized exponential distribution
Juan M. Astorga,
Héctor W. Gómez and
Heleno Bolfarine
Communications in Statistics - Theory and Methods, 2017, vol. 46, issue 5, 2091-2102
Abstract:
In this paper, we introduce an extension of the generalized exponential (GE) distribution, making it more robust against possible influential observations. The new model is defined as the quotient between a GE random variable and a beta-distributed random variable with one unknown parameter. The resulting distribution is a distribution with greater kurtosis than the GE distribution. Probability properties of the distribution such as moments and asymmetry and kurtosis are studied. Likewise, statistical properties are investigated using the method of moments and the maximum likelihood approach. Two real data analyses are reported illustrating better performance of the new model over the GE model.
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2015.1032426 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:46:y:2017:i:5:p:2091-2102
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2015.1032426
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().