Non parametric regression estimations over Lp risk based on biased data
Junke Kou and
Youming Liu
Communications in Statistics - Theory and Methods, 2017, vol. 46, issue 5, 2375-2395
Abstract:
Using a wavelet basis, Chesneau and Shirazi study the estimation of one-dimensional regression functions in a biased non parametric model over L2 risk (see Chesneau, C and Shirazi, E. Non parametric wavelet regression based on biased data, Communication in Statistics – Theory and Methods, 43: 2642–2658, 2014). This article considers d-dimensional regression function estimation over Lp (1 ⩽ p
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2015.1044670 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:46:y:2017:i:5:p:2375-2395
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2015.1044670
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().