A study on imbalance support vector machine algorithms for sufficient dimension reduction
Luke Smallman and
Andreas Artemiou
Communications in Statistics - Theory and Methods, 2017, vol. 46, issue 6, 2751-2763
Abstract:
Li et al. (2011) presented the novel idea of using support vector machines (SVMs) to perform sufficient dimension reduction. In this work, we investigate the potential improvement in recovering the dimension reduction subspace when one changes the SVM algorithm to treat imbalance based on several proposals in the machine learning literature. We find out that in most situations, treating the imbalanced nature of the slices will help improve the estimation. Our results are verified through simulation and real data applications.
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2015.1048889 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:46:y:2017:i:6:p:2751-2763
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2015.1048889
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().