Empirical likelihood inference in partially linear single-index models with endogenous covariates
Yiping Yang,
Lifang Chen and
Peixin Zhao
Communications in Statistics - Theory and Methods, 2017, vol. 46, issue 7, 3297-3307
Abstract:
In this article, we consider how to construct the confidence regions of the unknown parameters for partially linear single-index models with endogenous covariates. To eliminate the influence of the endogenous covariates, an empirical likelihood method is proposed based on instrumental variables. Under some regularly conditions, the asymptotic distribution of the proposed empirical log-likelihood ratio is proved to be a Chi-squared distribution. We investigate the finite-sample performance of the proposed method via simulation studies.
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2015.1060341 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:46:y:2017:i:7:p:3297-3307
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2015.1060341
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().