EconPapers    
Economics at your fingertips  
 

Parametric bootstrap inferences for the growth curve models with intraclass correlation structure

Liwen Xu

Communications in Statistics - Theory and Methods, 2017, vol. 46, issue 7, 3308-3320

Abstract: This paper presents parametric bootstrap (PB) approaches for hypothesis testing and interval estimation of the fixed effects and the variance component in the growth curve models with intraclass correlation structure. The PB pivot variables are proposed based on the sufficient statistics of the parameters. Some simulation results are presented to compare the performance of the proposed approaches with the generalized inferences. Our studies show that the PB approaches perform satisfactorily for various cell sizes and parameter configurations, and tends to outperform the generalized inferences with respect to the coverage probabilities and powers. The PB approaches not only have almost exact coverage probabilities and Type I error rates, but also have the shorter expected lengths and the higher powers. Furthermore, the PB procedure can be simply carried out by a few simulation steps. Finally, the proposed approaches are illustrated by using a real data example.

Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2015.1060343 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:46:y:2017:i:7:p:3308-3320

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20

DOI: 10.1080/03610926.2015.1060343

Access Statistics for this article

Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe

More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:lstaxx:v:46:y:2017:i:7:p:3308-3320